Sediment-Mahagement Work-Group

SWMG meeting – 03/26/2024 Washington, D.C.

Laboratory scale evaluation of combining advanced oxidation process with sediment stabilization for beneficial use in construction -Balaji Rao, TTU

Project funded by ERDC under contract W912HZ23C0070 Dr. David Moore – PPP Program Lead

US Army Corps of Engineers® Engineer Research and Development Center

Project Team

Member	Organization	Pls/Student- Responsibilities
Dr. Balaji Rao	Texas Tech University	Project Integration, Tasks-1 &2 Lead
Dr. Danny Reible	Texas Tech University	Tasks-1&2
Dr. Magdalena Rakowska	Texas Tech University	Tasks-1&2
Nahirobe Barragan	Texas Tech University	Student; Tasks-1&2
Dr. Robert Miskewitz	Rutgers University	Task-3 Lead
Dr. Tyler Oathes	Rutgers University	Task-3
Dr. Eric Stern	TPRG	Task-3

TIPPING POINT RESOURCES GROUP

Background & Study Motivation

- Disposal of dredged sediment can be expensive
- Strategies that can make sediment amenable for beneficial use is needed
- Advanced Oxidation Process (AOP) treatment have shown potential to destroy PoPs
- Studies on AOP efficacy for treating PoPs in contaminated sediment is limited

Hypothesis testing

Optimized AOP treatment can significantly reduce PoPs in sediment thereby reducing disposal risks (including material handling) & making beneficial use of such sediment feasible meeting a regulatory criteria.

AOP – literature review

- > Chemical based AOP Hydroxyl (•OH), persulfate (SO_4^{-}) and permanganate (MnO_4^{-}) treatment
 - Iron (Fe2+/Fe(0)) based activation of H2O2 (Fenton) and S₂O₈⁻/SO₅²⁻ common strategy employed for •OH and SO₄⁻
 - Most studies focused on wastewater and soils limited on sediments
- Optimize treatment conditions
 - Removal dependent on oxidation type, dosage (e.g., 10²:1 to 10⁶:1 Oxidant/PAH), TOC, DOC, activator type (Fe based vs. heat/light/high pH), presence of C based sorbents, etc.
- > Evaluate treatment efficacy and potential byproducts for variety of contaminants
 - 2-ring PAHs showed lower removal efficiency while >2 ring removal were comparable— one study showed inconsistent removal among individual PAH for same ring #
 - > PCB removal dependent on # and position of CI with better removal rates for lower PCB homologs
 - Zero-valent Iron (ZVI)/nZVI used for activating •OH and SO₄⁻• based AOP may induce synergistic effect through de-chlorination
 - Potential dioxin/PFAS formation from precursors should be assessed
 - Byproducts of PAH-AOP treatment include alcohols, aliphatic acids, quinones that may be amenable for further microbial degradation

Objectives & Tasks

- I. Evaluate the use of ex-situ advanced oxidation process (AOP) through laboratory experiments with and without sorbent to test the hypothesis that AOP shall reduce the risks associated with contaminated sediments
- II. Evaluate feasibility of AOP treated sediment to stabilization using binding materials (e.g., Portland cement) for beneficial use in the construction and maritime industries.
- III. Perform theoretical techno-economic assessment which includes evaluating multiple costbenefit application scenarios

Task-1: Sediment screening to target high risks contaminated sites.

Task-2: Laboratory scale experiments to optimize AOP and sorbent parameters.

Task-3: Performance evaluation of AOP treated vs. untreated sediments for stabilization.

Task-1: Sediment screening

- Comprehensive characterization of sediment
 - Solid/porewater PoPs & metals
 - > TOC, BC, DOC, pH & anions
 - Particle size distribution (PSD)

Task-2: Sediment Treatment

- Evaluate Fenton, persulfate and permanganate oxidation process for PoPs destruction
- Compare metal and residual PoP availability post-treatment
- Potential for volatile loss of CoCs during treatment
- Select 'best' performing treatment/s for task-3

Task-3: Treated Sediment Stabilization

- Select set of optimally treated sediments will undergo stabilization/solidification
- Bench-scale test to develop binder rating curves comparing stabilized sediment to water/cement ratio
- TCLP and SPLP test on stabilized sediment

Schedule & Deliverables

	20	23 2024							2025											
Tasks	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6
1. Sediment screening																				
2. AOP experiments																				
3. Stabilization experiments																				
Deliverables/Report	а				b				С		d			С						е
		Mor	nthly	/ prc	ject	mee	eting	js w	ith E	RD	C pr	esol	nnel	to u	pda	te pr	rojec	ct pro	ogre	SS
	а	Pro	Project FACT sheet & Story board																	
	b	Sediment Workshop in DC																		
	c Interim Technical report/Peer-reviewed paper																			
	d	go/no-go decision - represented by red star																		
	е	fina	l rep	oort																

Task-1: Sediment screening

Sediment	Description
Indiana Harbor	Confined Disposal Facility
Newtown Creek, NY	Old industrial- coal tar sites
Brooklyn Naval Yard	Combined Sewer Outflow
Bayway Creek, NJ	d/s of Bayway Refinery
Newark Bay, NJ	Dioxin impacted site

Results so far...

Locations	ТОС (%)	рН	Cr	Mn	Ni	Cu	Zn	Cd	Pb	As	Ag	Co	Fe
Ladia a Llada a D4	42.4	7 4	663	2023	89	293	4263	10.20	739	83	3	7	221034
Indiana Harbor R1	13.4	7.4	>FRM	NA	>FRM	>FRM	>FRM	>FRM	>FRM	>FRM	1		E
			1167	237	800	3488	6084	203	1623	68	31	19	39439
Newtown CR-S	19.6	6.0											
			>ERM	NA	>ERM	>ERM	>ERM	>ERM	>ERM	>PEL			
Nowtown CP F	100	ΕO	1236	248	830	3627	6451	214	1676	72	30.0	19.5	42146
	10.9	5.9	>ERM	NA	>ERM	>ERM	>ERM	>ERM	>ERM	>ERM			
			94	441	35	104	223	0.55	105	13	1.6	9.1	33826
Nowark Bay D	20	67						J		J	J		
INEWAIK DAY D	5.0	0.7	>TEL	NA	>TEL	>TEL	>TEL	<tel< td=""><td>>TEL</td><td>>TEL</td><td></td><td></td><td></td></tel<>	>TEL	>TEL			
			96	448	36	104	226	0.58	106	14	1.6	9.4	34920
Newark Bay K	3.1	6.9	S TEI	NA	N TEI	N TEI	> TEI	J	S TEI		1		
			21EL 122	NA 396	71EL //1	/79	524	2 /8	71EL	>1EL 56	17	0.8	33644
Desire Creede CD D	0.2	C 0	122	330	41	475	524	2.40	/4/			5.0	33044
Bayway Creek CR-P	8.3	0.8	>TEL	NA	>TEL	>ERM	>ERM	>TEL	>ERM	>PEL	-		
			127	422	43	498	566	2.51	756	59	1.7	9.9	34503
Bayway Creek CR-X	83	61									J		
Bayway creek cit x	0.5	0.1	>TEL	NA	>PEL	>ERM	>ERM	>TEL	>ERM	>PEL			
		<u> </u>	87	409	42	200	474	3.49	166	14	2.3	11.4	43892
Brooklyn Naval Yard W	6./	6.5	STEL	NA	STEL	>DEI	SEDM	STEL	>DEI		J		
			74 1	384.9	35.4	168.6	413.4	2 1	148 5	12.5	19	10 1	40561 1
Brooklyn Naval Vard N	62	67					0.4		2.010	o	J		
		0.7	>TEL	NA	>TEL	>PEL	>PEL	>TEL	>PEL	>TEL			

mg/kg-dry sediment

- High trace metal in bulk
 - High Fe implications to

AOP

- ΣPAH-18: 15-250 mg/kg* (*estimates)
- Complete characterization

ongoing

TEL: Threshold effective level, PEL: Probable effective level, ERM: Effective median range (NOAA sediment screening values)

Ongoing work

- > Task-1 sediment screening:
 - Pending characterization: PCBs, Dioxins, Hg, Fe(II), PSD, PFAS and porewater
- Task-2 Sediment AOP treatment: Initiated in March; expected completion September
- Task-3: Expected initiation October 2024

Select References

- 1. Arreola, Diana, et al. "Dredged Material Decision Tool (DMDT) for Sustainable Beneficial Reuse Applications." Journal of Marine Science and Engineering 10.2 (2022): 178.
- Scaria, Jaimy, and Puthiya Veetil Nidheesh. "Comparison of hydroxyl-radical-based advanced oxidation processes with sulfate radical-based advanced oxidation processes." Current Opinion in Chemical Engineering 36 (2022): 100830.
- 3. Chen, Chiu-Wen, et al. "Removal of polycyclic aromatic hydrocarbons from sediments using chemical oxidation processes." Journal of Advanced Oxidation Technologies 18.1 (2015): 15-22.
- Quiroga, J. M., A. Riaza, and M. A. Manzano. "Chemical degradation of PCB in the contaminated soils slurry: Direct Fenton oxidation and desorption combined with the photo-Fenton process." Journal of Environmental Science and Health Part A 44.11 (2009): 1120-1126
- 5. Vallejo, M., San Román, M. F., Ortiz, I., & Irabien, A. (2015). Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment. Chemosphere, 118, 44-56.
- 6. <u>https://frtr.gov/matrix/Dredged-Material-Processing-Technologies/#Cost</u>

QUESTIONS?